- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
21
- Author / Contributor
- Filter by Author / Creator
-
-
Baker, Christopher M. (2)
-
Abbey-Lee, Robin N (1)
-
Abbott, Jessica K (1)
-
Adams, Matthew P. (1)
-
Aguirre, Luis A (1)
-
Ainsworth, Tracy D. (1)
-
Alcaraz, Carles (1)
-
Aloni, Irith (1)
-
Altschul, Drew (1)
-
Arekar, Kunal (1)
-
Atkins, Jeff W (1)
-
Atkinson, Joe (1)
-
Baker, Christopher M (1)
-
Barrett, Meghan (1)
-
Bell, Kristian (1)
-
Bello, Suleiman Kehinde (1)
-
Beltrán, Iván (1)
-
Berauer, Bernd J (1)
-
Bergstrom, Dana M. (1)
-
Bertram, Michael Grant (1)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
This work introduces a comprehensive approach to assess the sensitivity of model outputs to changes in parameter values, constrained by the combination of prior beliefs and data. This approach identifies stiff parameter combinations strongly affecting the quality of the model-data fit while simultaneously revealing which of these key parameter combinations are informed primarily by the data or are also substantively influenced by the priors. We focus on the very common context in complex systems where the amount and quality of data are low compared to the number of model parameters to be collectively estimated, and showcase the benefits of this technique for applications in biochemistry, ecology, and cardiac electrophysiology. We also show how stiff parameter combinations, once identified, uncover controlling mechanisms underlying the system being modeled and inform which of the model parameters need to be prioritized in future experiments for improved parameter inference from collective model-data fitting.more » « less
-
Gould, Elliot; Fraser, Hannah S; Parker, Timothy H; Nakagawa, Shinichi; Griffith, Simon C; Vesk, Peter A; Fidler, Fiona; Hamilton, Daniel G; Abbey-Lee, Robin N; Abbott, Jessica K; et al (, BMC Biology)Free, publicly-accessible full text available December 1, 2026
-
Bergstrom, Dana M.; Wienecke, Barbara C.; Hoff, John; Hughes, Lesley; Lindenmayer, David B.; Ainsworth, Tracy D.; Baker, Christopher M.; Bland, Lucie; Bowman, David M.; Brooks, Shaun T.; et al (, Global Change Biology)null (Ed.)
An official website of the United States government
